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Abstract

In this paper, we report a versionof the Sl?ace-TiIneConservation Elenlcnt, and So-
hition Elcni(-_rtt(CE,/SE) Met,hod in which the 2D and 3D unsteady Euler equations are
simulated using structured or unstructured quadrilateral and hexahedralmeshes,respec-
tively. Iri the present method, rrieshvaluesof flow variables and their spatial derivatives
are treated as independent unknowns to be solvedfor. At each mesh point, the valueof
a flow variable is obtained by imposinga flux conservationcondition. On the other hand,
the spatial derivatives are evaluated using a finite-difference/weighted-averageprocedure.
Note that the presentextensionretains manykey advantagesof the original CE/SE method
which usestriangular and tetrahedral meshes,respectively,for its 2D and 3D applications.
Theseadvantagesinclude efficient parallel computing, easeof implementing non-reflecting
boundary conditions, high-fidelity resolution of shocksand waves,and a genuinely mul-
tidimensional formulation without using a dimensional-splitting approach. In particular,
becauseRiemann solvers---thecornerstonesof the Godunov-typeupwind schemes,are not
neededto capture shocks, the computational logic of the present method is considerably
simpler. To demonstrate the capability of the present method, numerical results are pre-
sentedfor severalbenchmark problems including oblique shock reflection, supersonicflow
overa wedge,and a 3D detonation flow.

1. Introduction

The Space-TimeConservationElement and Solution Element (CE/SE) Method, orig-
inally proposed by Chang [1-13], is a new numerical framework for solving conservation
laws. The CE/SE method is not an incremental improvement of a previously existing
CFD method, and it differs substantially from other well-establishedmethods. The CE/SE
method hasmany nontraditional features,including aunified treatment of spaceand time,
the introduction of conservation element (CE) and solution element (SE), and a novel
shockcapturing strategy without using Riemannsolvers. Note that conservation elements
are nonoverlappingspace-timesubdomainsintroduced such that (i) the computational do-
main is the union of thesesubdomains; and (ii) flux conservation can be enforced over
each of them and also over the union of any combination of them. On the other hand,
each solution element is a space-timesubdomain over which any physical flux vector is
approximated using simple smooth functions. In general,a conservationelement doesnot
coincide with a solution element.

To date, numeroushighly accurateCE/SE steady and unsteady solutions with Mach
numbers ranging from 0.0028 to 10 have been obtained without using preconditioning
or other special techniques [1--26]. The flow phenomenamodeled include traveling and
interacting shocks,acousticwaves,sheddingvortices,detonation waves,and cavitation. In
particular, the rather unique capability of the CE/SE method to resolveboth strong shocks
and small disturbances (e.g., acoustic waves) simultaneously has been verified through
several accurate predictions of experimental data [15-17]. Note that: while zlumerical
dissipation is required for shock resolution, it may also result in anni_lilatioi1 of small

dist_lrhances. Th_2s _ soh,'er that c'_m handle b_th strrmg shocks and small disturbances



,_im,flr,an_:_m._'ly nmsr be able. r,o ov_-.'rcrml_ this di_culty. The design principlc's of the

CE/SE rn_;t,ho_l ha, v_, been extensively ilhtstrated in the cited references. [n this paper, a

brief d_:scription of the CE/SE mcdlod is provided as the backgr_mnd of the present, work.

Perhaps, one of the most important features of the CE/SE met, hod is the adoption

of an integral form of space-time flux conservation as the cornerstone for the subsequent

num(;rical discretiza_ion. Note that one derives the conventional finite-volume methods

based on Reynolds' transport theorem [27], in which space and time are treated separately.

As will be shown shortly, this separate treatment of space and time imposes a restriction

on the space-time geometry of finite volumes and, as a resulL classical Riemann problems

arise natually in the course of flux evaluation across an interface. In contrast, due to

its unified treatment of space and time, Chang's flux conservation formulation allows a

choice of r_l_c space-lime geometry of CEb _hat render it unnecessary _o solve Riemann

problems. To clarify this fundamental difference, in this Introduction, we will first review

the conventional integral form for hyperbolic conservation laws in Sec. 1.1 as a contrast

to Chang's integral form which is described in See. 1.2. The original CE/SE method is

reviewed in Sec. 1.3, and the objectives and outline of the present work are presented in
Sec. 1.4.

1.1. Conventional Pinlte Volume Methods

Consider the differential form of a conservation law, i.e.,

a_z

c3--_+ '_ '_ = 0 (1.1)

where (i) u is the density of the conserved quantity; (ii) -h is the spatial flux vector; and

(iii) _. is the spatial divergence operator. Note that, in order to distingush a spatial object

from a space-time object (see below), hereafter the former will be denoted by an underline.

By using the Reynolds' transport theorem, one can obtain the conventional integral form

of Eq. (1.1), i.e.,

0-7 fi.d = 0 (1.2)
_ _(Y_)

where (i) V is a t_xed spatial domain (i.e., a "control volume"); (ii) dv is a spatial volume

element; (iii) _S(V) is the boundary of V__;and (iv) dg" = dcr r7 with dcr and 77, respectively,

being the area and the unit outward normal vector of a surface element on S(__V). By

integrating Eq. (1.2) over the time interval (t_,_f), one obtains

?

4 fi 0
Js_(v__)

1.3)

The discretization of Eq. 1.3) is the focus of conventional finite volume methods [27]

1.2. The Space-Time Flux Conservation Formulation
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Let (i) E_, denote an N-_Lhm_'nsional Euclidean _pa.ce in which .r l, z2 ..... .rN-L are

spatial coordiaat,('s and :c,v = t: (ii) _. be the divergence operator in EN and (iii) _z def

(_h,_t). Then Eq. (1.1) implies V-h = 0. As a result,, Gauss' Divergence Theorem in EN

implies

h'. d.g'= 0 (1.4)
(v)

As depicted in Fig. 1, here (i) S(V) is the boundary of an arbitrary space-time region V in

E,:, and (ii) d_ = dcr_ with dcr and _7, respectively, being the area and the unit outward

normal of a surface element on S(V). Note that: (i) because _z. dg" is the space-time flux

of h leaving the region V through the surface element d._', Eq. (1.4) simply states that

_he total space-time flux of/z leaving V through S(V) vanishes; and (ii) all mathematical

operations can be carried out as though EN were an ordinary N-dimensional Euclidean

space.

Let N = 2. For this case, (i) zl = z and z2 = t; (ii) _h = h_; (iii) V. h = Oh_/Oz; and

(iv) a "surface element" on S(V) and the "area" of this element reduce to a line segment

and the length of this segment, respectively (see Fig. 1). Note that, for an arbitrary V,

the spatial projection g__(t) of the cross-section of V at time t generally varies with t. The

exception occurs only if V is a cylinder with its axis being parallel to the time axis, such

as the rectangle ABCD depicted in Fig. 2(a). In this case, V__(t) is independent of t and
thus it can be considered as a "control volume."

Let V be the rectangle ABCD depicted in Fig. 2(a). Then S(V) is formed by the line

segments AB, BC, CD and DA. Let (i) t = t_ at CD; (ii) t = t I at AB; (iii) z = z, at

BC; and (iv) z = zf at DA. Then because h = (h_, u), with the aid of Fig. 2(a), Eq. (1.4)

implies

_zdz - udz + h_ dt - h_ dt = 0 (1.5)

Note that Eq. (1.3) reduces to Eq. (1.5) for the 1D unsteady case

spatial cylinder of constant cross-section depicted in Fig. 2(b); (ii)

h = (h_,0,0) with h_ = h_(:c,t).

Note that generally the discretization of Eq. (1.3) is carried out

in which (i) __Vis the

u = u(z,t); and (iii)

by dividing the entire

space-time computational domain into space-time CEs. Each CE is a cylinder in space-time

with (i) its spatial projection being the control volume V, and (ii) its top and bottom faces

representing two constant time levels. Because the control volume is a fixed spatial domain,

these CEs generally are stacked up exactly on the top of each other, i.e., no staggering of

CEs in time is allowed (see Fig. 2(c) for the N = 2 case). With this arrangement of CEs,

the vertical interface tha_ separates any two neighboring columns of CEs will always be

sandwiched between two neighboring columns of mesh points (marked by (tots in Fig. 2(c)).

As such, flux at the vertical interface of two neighboring CEs generally must be evaluated

by interpolating the data from these two CEs. How this interpolation should be carried
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_l_t prop_'rly under varyin_ _ohLdonbehavh,r is a difficult prol)leln. A,_ WH1 tW _how'n

immediaUqy, with a new spac('-thn(_ arrangement of CEs and mesh point._, and a proper

d(;finition of SEs. the a6ove difficult interpolation problem can b__ bypa.ss_'d completely.

1.3. The CE/SE Method

As an example, the CE/SE method will be described by considerin_ the PDE

a(au )
--+ -0 (1.6)
Ot Ox

and

(x,t;j, ,)aef r, ,,

fz*(z,t;j,n) def (au*(z,t;j,r_), u*(z,t;j,n)) (1.8)

Note that (i) u], (u=)}, and (ut)} are constants in SE(j, n), (ii) (zj,t') are the coordinates

of the mesh point (j,n), and (iii) Eq. (1.8) is the numerical analogue of the definition

=
Let u = u*(z,t ;j,n) satisfy Eq. (1.6) within SE(j, n). Then one has (ut)} _ = -a (u_)2.

As a result, Eq. (1.7) reduces to

tt*(z,t;j,n)=u]+(tt=)y[(z-zj)-a(t-t_)], (z,t) cSE(j,n) (1.9)

i.e., u_ and (u_:)] are the only independent marching variables associated with (j,n).
Let E2 be divided into nonoverlapping rectangular regions (see Fig. 3(@) referred to

as conservation elements. As depicted in Figs. 3(c) and 3(d), two CEs, i.e., CE_(j, n) and

CE+(j,n), are associated with each interior mesh point (j,n) C tI,. These CEs will be

referred to as basic conservation dements (BCEs). Contrarily, CE(j,n) (see Fig. 3(e)),

which is the union of CE_(j,n) and CE+(j,n), will be referred to as a compounded

conservation element (CCE).

Note that, among the line segments forming the boundary of CE_(j, n), AB and

AD belong to SE(j, n), while CB and C'D belong to SE(j - 1/2, n - 1/2). Similarly, the

boundary of CE+(j,n) belongs to either SE(j,n) or SE(j + 1/2,n- 1/2). As a result, by

imposing two conservation conditions at each (j, n) E _, i.e.,

#z* d._'= O, (j, n) E k5 (1.10)
• '(C [:.'..(j,,_))

(1.7)

where a is a constant. Obviously the integra] form of Eq. (1.6) is Eq. (1.4) with N = 2

and h" = (a_, u).

To proceed, let _IJ d_,note the set of all mesh points in E2 (dots in Fig. 3(a)). Each

(7, n) _ • is associated with a solution element, i.e., SE(j, n). By definition, SE(j, n) is

the interior of the space-time region bounded by a dashed curve depicted in Fig. 3(b). It

includes a horizontal line segment, a vertical line segment, and their immediate neighbor-

hood.

For any (x,t) C SE(j,n), u(x,t) and f_(x,t), respectively, are approximated by



and _1._hlgDis. (1.8)and (I.0;,,m_ has (ill

..j= __ (I ÷U)el)_i/_ +(1-- u)'tLj+i/_ +(1- u_) L_[{'t_+_''-'/_'_U-'/'_-(u'+h'-L/'_]O+,/_J(I.II)

an([. assuming 1 -u z _ 0, (ii)

•n -6 n--l�2]1 / .-L/2 .-_/2 +,.-1/2 _ (1 = _,)(u_ )j+1/2(_+>; = __[b+,/_-_;-L/_- (I-u)(_j__/_ , (1.12)

def (.it + def nHere _, : (_*/_,x and _ )} = (',_/4)(_)j, The _ scheme [1,5,S],the explicit nondissi-
pative CE/SE solverfor Eq. (1.6).isformed hv Eq._.(I.II)and (I.12).

According to Eq. (I.I0),the totalflux of h" leavingthe boundary of any BCE iszero.

Because the surface integration over any interface separating two neighboring BCEs is
evaluatecl using the information from a single SE, obviously the local conservation relation

Eq. (1.10) leads to a global flux conservation relation, i.e., the total ftux of h" leaving the

boundary of any space-time region that is the union of any combination of BCEs will also

vanish. In particular, because CE(j, n)is the union of CE_(j,n) and CE+(j,n),

/s P.d_=O,
(cs(j,n))

(J,_) c • (1.13)

must follow from Eq. (1.10). In fact, it can be shown that Eq. (I.13) is equivalent to

Eq.(1.i1).
In addition to the nondissipative a scheme, there is a broad family of dissipative CE/SE

solvers of Eq. (1.6) in which only the Iess stringent conservation condition Eq. (1.13) is

assumed [2,3,5,8]. Because Eq. (1.13)'is equivalent to Eq. (1.11), for each of these schemes,

_z_ is still evaluated using Eq. (1.11) while + '_(u_)j is evaluated using an equation different

from Eq. (1.12). Among these schemes is one (referred to as the a-a scheme) which is among

the simplest and yet capable of handling solutions with discontinuities. For this scheme,
-6 n

(u_)j is evaluated using a finite-difference/weighted-average procedure which involves a

parameter a (see Eqs. (2.62), (2.63) and (2.65) in [12]). The key disadvantage of the a-a

scheme and its extensions (see below) is that, compared with the more general CE/SE

schemes, they allow for less freedom in adjusting numerical dissipation. As explained

in Sec. 5.5 of [9], this inflexibility may impose a constraint on the performance of these

schemes in numerical simulations involving highly nonuniform meshes.

The above description of the CE/SE development is based on a simple PDE. However,

it represents the essence of the general CE/SE development which may involve a system

of conservation laws in one, two or three spatial dimensions. In particular, note that:

(a) The 1D Euler extension of the a-o_ scheme, which first appears in [2], has been shown

to be an accurate and robust shock-capturing solver [2,3,5.6].

(b) In the original 2D extension of the CE/SE method [4,6-10], triangles are used as the

basic blfilding blocks of the spatial meshes. Corresponding to the three sides of a
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triangle, three BCEs arc defined fi)r eachmeshpoint. The unionof the.three BCEs at
a meshpoint, form the CCE at, the same mesh point. Among the family of 2D CE/SE

schemes described in [4,6 1()], the 2D a scheme, which has three unknowns tt, u_. and

_i,j at each mesh point, are constructed by imposing three conservation conditions

over the three BCEs at each mesh point. On the other hand, only one conservation

condition (imposed over the CCE) per mesh point, and per conservation law is used in

the construction of the 2D Euler a-a scheme (i.e., the scheme defined by Eqs. (6.54),

(6.107) and (6.108) in [8]). Because of its simplicity, accuracy and roubustness, all the

numerical results presented in [4,8,9] are generated using the 2D Euler a-a scheme.

(c) The 3D Euler a-a scheme [11] is a straightforward extension of the 2D Euler a-a

scheme taking into account that: (i) tetrahedrons are used as the basic building

blocks of 3D spatial meshes; and (ii) corresponding to the four sides of a tetrahedron,

the CCE at each mesh point is the union of the tbur BCEs defined at the same mesh

point.

1.4. The Objectives and Outline of the Present Work

In this paper, the 2D and 3D unstructured-mesh a-a Euler schemes will be constructed

using quadrilateral and hexahedral meshes, respectively. It will be shown that the present

schemes are also simple, robust, and accurate. The rest of the paper is organized as follows.

The 2D and aD solvers along with their key properties are described in Secs. 2 and 3,

respectively. Numerical examples are presented in Sec. 4 to demonstrate the capabilities

of the present solvers. The concept of local and global flux conservation for the present

2D scheme with an unstructured mesh along with a post-marching procedure for handling

a possible "solution decoupling" problem is discussed in the Appendix. The concluding

remarks are given in Sec. 5.

2. The 2D Unsteady Euler Solver

Consider the standard conservation form of the two-dimensional unsteady Euler equa-

tions of a perfect gas [9]:

c%m 8f_ Ogm

0-----_+ _ + Oy - 0, m = 1,2,3,4 (2.1)

where fm and g,,, rrz = 1,2, 3, 4, are explicit functions of the independent flow variables

u_, m = 1,2,3,4 [9]. Let Xl = x, x2 = y and xa = t be the coordinates of a three

dimensional Euclidean space E3. Then, in the case that u_ are smooth functions of x, ?,,,

z and t, Eq. (2.1) can be derived from the more fundamental conservation laws

/s ..dJ= O,
(v)

m = 1,2,3,4 (2.2)

where (i) S(V) and d_'were defined following Eq. (11.4); and (ii) _z,_ d___r(fm,g,,,Um). Note

that Eq. (2.2) is valid even in the presence of flow discontinuities.
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F'ortlm f_tt,_uc([cvelopmcnr,,Ict,

dcf z _
.f,,,.e d,:r=O.f,,,/Ou, e, gm,e = O.qm/c3_J,e, rr_,,(= 1,')-, .3,4 (2.3)

2.1. Conservation Elements and Solution Elements

Consider Fig. 4(a). Here _h(: x- 9 plane is divided into nonoverlappmg convex quadri-

laterals and any two neighboring quadrilaterals share a common side. Moreover, (i) vertices

and centroids of quadrilaterals are marked by dots and circles, respectively; (ii) Q is the

centroid of a typical quadrilateral/?lB_2B__3B__4; (iii) A_, A 2, A a and .4__4,respectively, are the

centroids of the four quadrilaterals neighboring to the quadrilateral B___B2B__aB__4;and (iv)

Q* (marked by a cross) is the centroid of the polygon A1B__IA_B2A___B__,_A_aB___. Hereafter,

point Q* (which generally does not coincide with point Q) is referred to as the solution

point associated with the centroid Q. Note that points A1, A__2_A__a and A__, which are also

marked by crosses, are the solution points associated with the centroids A_, .4_2, A 3 and

A__4,respectively.

Next consider Fig. 4(b). Here (i) t = nat at the nth time level (n = 0, 1/2, 1,3/2,...);

and (ii) for a given rt > 0, Q, Q', and Q", respectively, denote the points on the nth, the

(_- 1/2)th, and the (n+ 1/2)th time levels with point Q (see Fig. 4(a)) being their common

spatial projection. Other space-time mesh points, such as those depicted in Fig. 4(b), and

also those not depicted, are defined similarly. In particular, (i) Q', A_, A_, A_ and A_,

by definition, lie on the r_th time level and, respectively, are the space-time solution mesh

points associated with points Q, Aa, A2, A3 and A4; and (ii) Q'*, Ai* , A_*, A_* and A_*, by

definition, lie on the (n - 1/2)th time level and, respectively, are the space-time solution

mesh points associated with points Q', Ai, A;, A; and A;.

With the above preliminaries, the solution element of point Q*, denoted by SE(Q*),

is defined as the union of the five plane segments _,_n'n"B"B'l 1, QQ' ,,B2B2,', , ,_,_'q'n"B"R'a*-,a,

Q,_,,R,,R, and A1B1A2B2AaBaA4B4, and their immediate neighborhoods. Moreover,,o_ "'4 _'4,

the four basic conservation elements (BCEs) of point Q, denoted by CEe(Q), g = 1, 2, 3, 4,

are defined to be the space-time cylinders A1B1QB4A'IR''I'R'_I'_ _4, A2B2QB1A2B_, _' 'n'B'l,

AaBaQB2A'aB'aQ'B _ and A4B4QBaA'4B'4Q'B'a, respectively. In addition, the compounded

conservation element (CCE) of point Q, denoted by CE(Q), is defined to be the space-

_ /_1 zil /:_, d' /:U t ttime cylinder A1 B1 AgB2 A3B3A4B4A_ _.,1,_2 _.,2,,3._,3 AgB4, i.e., the union of the above four
BCEs.

In this section, (i) the set of the space-time mesh points whose spatial projections are

the centroids of quadrilaterals depicted in Fig. 4(a) is denoted by f_; and (ii) the set of

the space-time mesh points whose spatial projections are the solution points depicted in

Fig. 4(a) is denoted by f2*. Note that the BCEs and the CCE of any mesh point E _ and

the SE of any mesh point E Q* are defined in a manner identical to that described earlier

for point Q and Q'.

2.2. Approximations Within a Solution Element

For any Q* E Q* and any (x,y,t) E SE(Q*), u,_(z,y,t), fm(Z,g,_), gm(X,y:t) and

h,,(:c yj, t). respectively, are approximated by u,*,,(x, y, t; Q*), f;(z_ v, t; Q*), .q_(:r, y, _; Q*)



and fG_I.r _!], t Q') (see below). For any m = 1, 2, .3,4, let

where (i) (zQ.;.qco.,t n) are the coordinates of the space-time solution mesh.point Q*;
and (ii) (u,,)c2-, (ua_)c4-, ("_,_y)(4" and (umt)Q-, which are constants in SE(Q ), are the

numerical analogues of the values of u_. c3u_/Oz, Ou,,./cOy and O,tm/cOt at, point Q*,
respectively.

Let (fm)C.2", (gm)Q', (fro t)O" and (g,_,t)O" denote the values of the functions fro, gin,

fm,e and gin,e, respectively, when u,,_, m = 1,2,3,4, respectively, assumes the values of

(u_)Q., rrz = 1, 2, 3, 4. Then, for any rn, we define

4 4

(,frnz)Q" def _--_(fm,e)Q.(ut_)Q-, (g_:)Q. de__f Z(gm,f)Q.(tz_z)Q.

f=l _=1

(2.5a)

Because (i)

4

(fray)Q" def E(fm,e)c2.(uev)Q.,
f=l

4

g= 1

4

4

(gmt)Q" def E(grn,t)Q.(tttt)Q" (2.5c)

_=1

Ofm 4 Out (2.6)
Ox - E f ",t Ox

t----1

and (ii) the expression on the right side of the first equation in Eq. (2.5a) is the numerical

analogue of that on the right side of Eq. (2.6) at point Q*, (f_:)Q. can be considered as

the numerical analogue of the value of c3fm/Ox at point Q*. Similarly, (gm_)Q., (fmy)Q',

(gm_)Q', (fret)C2" and (gmt)Q. can be considered as the numerical analogues of the values

of c3g,_/Ox, cgfm/Oy, Ogm/Og, Ofm/Ot and cOgm/Ot at point Q*, respectively. As a result,
for any rn = 1.2, 3, 4, we define

f_(x,y,t;Q* deJ(,fm)c_.+(f,_z)c2.(x-zc_.)+(f_y)C2.(y_gc2 . +(fmt)Q.(t_t n) (2.7)

and

g.n(x,g,t;Q, d_j (gm)Q.+(gmz)Q.(Z_XQ.)+(gmv)Q.(y__yQ. +(grnt)Q'(f;-tn) (2.8)

Also. as an analogue to fz,, de f (f_, gin, Urn), for any m = 1, 2, 3, 4. we define

]'_r:_ (:r, _J,7t; Q*) def (fT,(Z ' Y, t; q*), .q,_(x, y, t; Q*), u_(x, y, t; Q*)) (2.9)



Not, c that. by t,heh definitions: (i) (fro)e', (.q_)Q-, (fm,e)Q'. and (gm.e)Q" are fuilcgions of

(tz,,,,)Q., ,r_, = 1,2,3,4: (ii) (f,_,,)Q. and (g,,_.)Q. are functions of(_t,,)Q, and (_.m_:)Q-, m =

1,2, 3, 4; (iii) (f,,,v)c4" and (g,_y)c2" are functions of (urn)Q- and (u_,j)Q., rrt = 1, 2,3,4;

and (iv)(.f_t)Q" and (gmt)(4" are functions of (urn)Q- and (umt)e-, rn = l, 2,3,4.

To proceed, we also assume that, for any (x, g, t) C SE(Q*), and any rn = 1, 2, 3, 4,

&tT,_(x,y,t;Q* ) af_(x,y,t;Q*) Og_(x,y,t;Q*)
+ + = 0 (2.10)

Ot Ox O,v

Note that Eq. (2.10) is the numerical analogue of Eq. (2.1). With the aid of Eqs. (2.4),

(2.7), (2.8), (2.5a), and (2.5b), Eq. (2.10) implies that. for any rn = 1,2.3.4,

4

(umt)O. = -(f_=)O." - (g_y)O." = - _ [(f_,_)Q" (ue_)Q- + (gm,e)O- (uev)Q.]
g=l

(2.11)

Thus (umt)Q- is a function of (urn)Q-, (um_)Q., and (umy)Q-, rn = 1,2,3, 4. From this

result and the facts stated following Eq. (2.9), one concludes that the only independent

discrete solution variables associated with the space-time solution point Q* are (Um)Q.,

(um=)Q-, and (um_)Q-, m = 1,2,3,4.

2.3. Evaluation of (Urn)Q-

Based on Figs. 4(a) and 4(b), we introduce the following preliminaries:

(a) The boundary of CE(Q) belongs to the union of SE(Q*), and SE(A}*), g = 1,2,3,4.

Specifically, (i) the octagon AIB1A2B2AaBaA4B4 belongs to SE(Q*); (ii) the quadri-
I I _l B, t p rlaterals A_BI._ 4, A_B4B4A_, and A_B;B,A_ belong to SE(A'_*); (iii) the quadri-

laterals a,n,o,R, , , , ,_'2"-'2"_ _, A2B_B_A2, and A2B2B2A2 belong to SE(A_*); (iv) the quadrilat-

erals -%*-'a'_a'n, r),n,...2, a3' B_B2Aa, and AaBaBaAa' ' belong to SE(A_*)', and (v) the quadri-
laterals A'B'r)' ' ' ' ' '4 4"_ B3, A4BaBaA4, and A4B4B4A4 belong to SE(A_*). Note that, by

definition, (i) the quadrilaterals AIB1QB4, A2BeQB1, AaBaQB2, and A4B4QBa,

which form the octagon AIB1A2B2AaBaA4B4 (the top face of CE(Q)), also be-

long to SE(A;), SE(A_), SE(A_), and SE(A{), respectively; and (ii) the octagon

A'_B',A'2B;A'aB;A'4B' 4 (the bottom face of the CE(Q)) also belongs to SE(Q'*). How-

ever, in the evaluation of Eq. (2.13) (see below), by assumption, the top face of CE(Q)

is considered to be a subset of SE(Q') while the bottom face is considered to be the

union of subsets of SE(A'e*), _ = 1, 2, 3,4.

(b) Let P be a space-time plane segment lying within SE(Q*). Let (i) A be the area

of F; (ii) (xc, g_,t_) be the coordinates of the centroid of F; and (iii) r7 be a unit

vector normal to F. Then, because Um(X,y,t;Q*), f_a(X,y,t;Q*) and gm(x,g,t;O*)

are linear in x, y and t, Eq. (2.9) implies that

fF _* Q*

f_.d$=hm(x_.,y¢,t_; ).Ag (2.12)

where d.g = do" t7 with do" being the area of a surface element on F.



(c) Let S (lcnot, c t,hc area of t.hc top face AIBIA2B, A:_B:_A._B,. of CE(Q), Because

tile mfi_ outward normal vector ((,it, ward from the interior of CE(Q)) of t,tlis face is

(0, 0, 1), ir.s surface vector (i.e., t,he unit outward normal vector mldtiplied by the area)

is (0, 0, S).

(d) Let (i) (ze,ye), g = 1,2,3,4, denote the spatial coordinates of the centroids of the

()'B' A',,B_°'B ' B'_'B' and ' ' ' '' A4B4Q B3, respectively: andquadritat, crals A' tB'j,v 4, . "_ J, A3 :_'_ 2

(ii) S e, f = 1,2, 3.4, denote the areas of the above four quadrilaterals, respectively.

Then (i) (z e, ye tn-l/2), f = 1, 2, 3, 4, are the coordinates of the above four eentroids,

respectively; and (,ii) (0, 0, -Se), _ = 1,2, 3, 4, are the surface vectors of the above four

quadrilaterals, respectively. Furthermore, because (i) the above four quadrilaterals

form the bottom face of CE(Q); and (ii) the area of the top face of CE(Q) is identical

_o that of the bottom face, one concludes that S -- }-_'_=1 Se'

' ' 'B[B1A1, ' ' ' ' ' '(e) Let the eight side faces A1B4B4A1, A 1 A2B1B1A2, _, A3B2B2As,A 2B2 B2 A,_

A'3B'aB3Aa, A'4B'aBaA4 and A'4B'4B4A4 of CE(Q) be assigned the indices (1, 1), (2, 1),

(1,2), (2,2), (1,3), (2,3), (1,4) and (2,4), respectively. Hereafter each side face with

the indices (k,g) is referred to as the (k,g) side face. For each g, by definition, the

(1,g) and (2, g) side faces belong to SE(A)*). Because (i) the spatial projection of

each side face is a line segment on the x-y plane; and (ii) each side face is sandwiched

between the (n - t/2)th and the nth time levels, one concludes that, for the (k,_)

side face, its surface vector and the coordinates of its centroid, respectively, are given

by (At/2)Aern e (zek,yk, , ,k, _,n{v,0) and e t n_ ,.t/4). Here A{ (nek_,n_v), and (z{,g_)

respectively, denote the length, the unit outward normal (on the x-y plane), and the

coordinates of the midpoint of the spatial projection of the (k, g) side face.

(f) Note that: (i) are the coordinates of the centroid Q* of the top face

A1B1A2B2AaBaA4B4 of CE(Q); (ii) u;(xo.,yQ.,t";Q* ) = (Urn)Q- (see Eq. (2.4));

and (iii) the surface vector of the top face is (0,0, S). as a result, Eq. (2.9) and (2.12)

imply that the flux of h m leaving CE(Q) through its top face is (Urn)Q-S. Similarly, by

using the information presented in items (a), (b), (d) and (e), the flux of h m leaving

the other faces of CE(Q) can be evaluated in terms of the independent marching

variables at points A_*, g = 1, 2, 3, 4.

Let

s ;;, .dr= o,
(cE(Q))

m = 1,2,3,4 (2.13)

i.e., the total flux of h_, leaving CE(Q) through its boundary vanishes. Then, with the aid

of the above preliminaries, it can be shown that

4

(,,m)Q.= Rem)/S, = 1,2,3,4 (2.14)

I0



where, for any m., _ = 1, 2, 3, 4,

R[,, S _ * (:_ _ t,"-1/'2 '*= u,_ , .7 , , Ae )

2
_t

- fm(xk'gf't'-'_t/4;A* )+nek,,gm(xk,yf*
k=l

,t" - at/4;A'e*)]
(s.15)

Because., bv, definition, t = t '_-1/'2 for any point ,4_'*, here the functions Um(Z,* y, t; A t'*),

fL(x g,t: "*,4 e ), and gm(x,g;t; " '*, , " " A e ) are defined using Eqs. (2.4), (2.7), and (2.8), respec-

tively, with the symbols Q* and t n in these equations being replaced by A}* and t "-1/2,

respectively. As a result, each R_ and therefore each (ttm)Q-, an independent marching

variable at the nth time level, is a function of several independent marching variables at

the (n - 1/2)th time level, i.e., (urn)AT , (umz)A'," and (?_my)/_o, m,g-_ 1,2,3,4.

2.4. Evaluation of (um_)Q- and (umu)Q-

A finite-difference approach similar to that given in [10] is employed here to evalu-

ate (um_)Q. and (umy)Q.. First, we perform a spatial translation of the quadrilateral

A_A_A_A?_ so that the centroid of the resulting new quadrilateral A_A_A_A?_ coincides

with Q* (see Fig. 4(c)). Let the centroid of the quadrilateral A_A_A_AI and its spatial

coordinates be denoted by A* and (Xa., YA'), respectively. Then (ZA_, YA; ), the spatial

coordinates of A_, are

XA_ : XA* _ -[- X,Q. -- XA. , and YA_ _- YA_ -[- YQ" -- YA" g = 1, 2, 3, 4

To proceed, let

(Um)A; d_f . ;A e ), m,g 1,2,3,4: Um(XA_,YA_,t n '_ (2.17)

Next, for any m = 1,2, 3, 4, consider the three points in the x-y-u space with the coor-

dinates (zQ.,gQ.,(Um)Q.), (ZA_,YA_,(Um)A_) and (XA_,YA[,(Um)A_), respectively. The

values of Ou/Oz and Ou/Oy on the plane that intercepts the three points are given by

where

and

L__._y

/_ dej :r,A_ -- 3:Qo gA_ -- YQ"

XA_ -- xQ* YA_ -- _/Q"

-- --

(2.19a)

(2.19b)

(2.19c)

ll



Not(, that: (i) A = 0 if and only if the spatial projections of .47, .4_ and Q* are collinear;
(k) _ _ (k)

and (ii) similarly, (TJ,,,_. jQ. and _.'u,m,j)Q., k = 2: 3_ 4, are defined, rcspcctively, by replacing
, 0 O. . O.the points 4'( and A_ in the above operations with (i) A 2 and A 3, (ii) A:_ and .44, and (iii)

A,_ and A'_, respectively.

With the above preliminaries, for each rn = 1,2,3,4, (um_)O. and (u,-,y)Q. may be

evaluated by,

4 4

1 Z(u_))O. (um_,)O" 1 Z(u_;)Q"
k=I k=l

('2.20)

Alternatively. for a flow with steel:)gradients or discontinuities, the simple averages in

Eq. (2.20) may be replaced by weighted averages, i.e.,

and

O,

m

if0_k =0, k= 1,2,3,4

otherwise

(2.213)

0,
('my)Q" : _-'_-k:14 [(Wm ) (Umy)Q*J(k)oe (k) /_-_k=4

if 0,,_k = 0,

1(W_k)) _ otherwise

k = 1,2,3,4

Here (i) a _> 0 is an adjustable constant (usually a = 1 or a = 2); (ii)

Or, k = U Q- + U Q- , m,/c= 1,2, 3,4 (2.22)

and (iii)

W2 ) d el (m2 _,r(m3 def W( 4 def= 0ra20maOm4, _/_/" ) def-._ OmaOm4Orrtl , ) .__ Orn4OmlOm2, ) ____ 0ml0m20m3

(2.23)

Note that: (i) to avoid dividing by zero, in practice a small positive number such as 10 -6°

is added to the denominators that appear in Eqs. (2.21a) and (2.21b); and (ii) Eqs. (2.213)

and (2.21"b) reduce to Eq. (2.20) if a = 0.

2.5. Remarks and Discussions

The present 2D Euler solver is formed using Eqs. (2.14), (2.213) and (2.215). Stability

of the solver generally requires that (i) a _> 0, and (ii) the maximal CFL number < 1.

Also, (i) with o_ > 1, the solver is capable of suppressing numerical oscillations near a

discontinuity; and (ii) solutions generated by the solver tend to become more smeared as

the CF.L number decreases or the value of o_ increases. Other key properties of this solver

are given in the following remarks:

12



(_) Th_ st<_'ncil of t,he pres('nt explicit solver is formed by on<! point at the upp(_'r time level

an(1 f'o_u' points at the low('r tim_-', level. Because the spatial projections of the four

points at the lower time level are the immediate neighbors of that of the point at the

upper time ievel, the stencil is staggered in space-time, and it is most compact among

the schernes using quadrilateral meshes. As a result, the solver is ideal for parallel

cornp_ttations.

(b) For a uniform mesh, points such as Q, Q* and A* referred to earlier coincide with one

another. In this case, the present solver can be greatly simplified. Also, by using the

arguments presented in [8,91 and also by numerical experiments, it can be shown that

the simplified scheme is second order in accuracy.

(c) The present scheme is applicable to both structured and unstructured meshes. For

a structured mesh, the set P.* may be divided into two disjoint subsets t2__ and fF_

with the following property: If any point, say point Q*, belongs to f__ (t2*__), then the

six space-time solution mesh points immediately neighboring to point Q*, i.e., points

Q'*, Q"*, and A_, g = 1,2,3,4, belong to t21 (t2__). Because, for each e = 1,2,3,4,

points A_* and A_ are immediate neighbors of each other and thus they must belong to

different subsets, one concludes that points Q*, and A)*, g = 1, 2, 3, 4, which form the

stencil of the present marching scheme, belong to the same subset. From the above

observations, it is seen that each of t2__ and t2"_ represents a staggered space-time

mesh. As such, the entire space-time mesh is a dual space-time mesh [9], i.e., the

union of two disjoint staggered space-time meshes. Furthermore, it is also obvious

that the marching over f2__ is completely decoupled from that over t2*_, i.e., marching

needs to be carried out only over one of these two staggered space-time meshes, unless

the deeoupling is prevented by other factors such as the boundary conditions imposed.

Note that boundary values generally are not updated using the main marching scheme.

As a result, solution values of Q__ and f_*_ may become coupled near a boundary (see

$ec. 41).

(d) Consider the decoupling case referred to in item (c). Let a space-time mesh point

belong to t2+ (f__) if and only if its associated space-time solution mesh point belongs

to f__ (fit). Then it is obvious that the set _ is formed by the two disjoint sets

t2+ and t2_. Moreover, the CCEs of the mesh points in t2+ (t2_) do not overlap

among themselves and they can fill any domain in E3. Furthermore, because the

surface integration over any interface separating two neighboring and nonoverlapping

CCEs is evaluated using the information from the same SE (i.e., the flux leaving a

CCE through its interface with a neighboring CCE is the negative of the flux leaving

the neighboring CCE through this interface), a summation of the local conservation

conditions Eq. (2.13) over the mesh points Q E fl+ (f__) leads to a global conservation

condition, i.e., for each rn = l, 2, 3,4, the total flux of h_ leaving the boundary of

any space-time region that is the union of any combination of the CCEs associated

with f_+ (f__) vanishes. Note that a similar discussion for the general case in which

decoupling may not occur will be given in the Appendix.

(e) The present solver and the triangular-mesh-based solver described in [10] are con-

13



(f)

strueted usingsimilar techniques.Using thesetechniquesand their trivial extensions,
one can easily develop a 2D CE/SE solver for spatial meshesformed by polygons of
diff'ercnt shapes. An advantageof using such a mixed mesh is that a geornetrically
complexspatial subdomaincanbe filled easilyusingtriangleswhile a lesscomplexsub-
domain, suchas a near-wall region, canbe filled using more regular shaped polygons
suchas quadrilaterals.
Becauseof the space-timestaggering nature of the stencil of the present scheme,a
solution of the presentschememay appearas the overlappingof two distinctively dif-
ferent solutions (especiallyin a high-gradient region)after many marching steps. The
significanceof this "solution decoupling" problem and how to handle it are discussed
in the Appendix. Note that this problemcouldoccurevenin the absenceof a complete
9+ f_*_ decoupling referred to earlier_ Also because the solution decoupling problem

is not significant for the test problems discussed in See. 4, the numerical results pre-

sented there are generated without using the post-marching procedure described in

the Appendix.

3. The 3D Unsteady Euler Solver

For the current 3D case, Eqs. (2.1)-(2.3) are replaced by

Ou m Ofm Ogm Oqm

t az ayO Oz-0, m=1,2,3,4,5 (3.1)

and

s
(v)

m = 1,2,3,4,5 (3.2)

: def deffrn,g, def Of,_/c)ue, gm,e = Og,,/Ou,, qm,* = Oqr_/OUt m,g = 1,2,3,4,5 (3.3)

respectively. Here (i) hm de=/ (fm,gm,qm,um); and (ii) the three dimensional Euclidean

space E3 referred to in Sec. 2 is replaced in the current case by the four dimensional

Euclidean space E4 with xl = x, x_ = y, x3 = z, and x4 = t.

3.1. Conservation Elements and Solution Elements

The spatialcomputational domain isdivided into nonoverlapping convex hexahedrons

of arbitrary shape with the understanding that any two neighboring hexahedrons share a

common face. In Fig. 5, Q__(marked by a circle)is the centroid of a typical hexahedron

B_B__2B__3B_.4B__B_B6B__vB8 (hereafterreferred to as the central hexahedron). Each of the

central hexahedron's six neighboring hexahedrons isarbitrarilyassigned an identification

index _ = 1,_,...,_) 6, i.e.,• the neighboring hexahedron with the index _ is referred to as

the gth neighbor of the central hexahedron. Also the centroid of the gth neighbor will be

denoted by A_e. As an example, the central hexahedron and its first neighbor is separated

by the quadrilateral B_B__4Bs&_ 5 in Fig. 5.

With the above preliminaries, we proceed with the following definitions:

14



(a} Point Q and the two end points (say points _1 and B2) of a,ny of t,hc twelve edges

of the central hcxahedron form a triangle. Each of the twelve triangles so formed is

arbitr_rilv, assigned an index j = 1,,,9 3,..., 12 and denoted bv. /X(j).

{bt Given any _ = 1,2,... ,6, a r,riangle is formed by the point _ and t,he two end points

of any of the four edges of the interface (a quadrilateral) that separates the central

hexahedron and its _th neighbor. Each of the four triangles so formed with the same

is arbit, rarily assigned an index 1_= 1,2, 3,4, and denoted by /X(]¢, _). As an example,

/_.41B__IB_,, _A1B4B_8, /_AtB_BsB.B__5, and /_A, BsB__ , depicted in Fig. 5 have the same

g = 1. Therefore they may be denoted by /',(1, 1), _,(2, 1), A(3, 1), and A(4, 1),

respect ively.

(c) The centroid of the 24-faced polyhedron B1B2B_B_aB__4B__sB__B__rB_B_sA1.42.4aA4.'4_4__A6is

referred to as tl_e solution point associated with point Q. Note that (i) the above

24-faced polyhedron hereafter is denoted by }E_P(24); and (ii) the centroid of V(24) is

denoted by Q* and marked by a cross in Fig. 5.

(d) Given any g = 1,2,...,6, points Q, A__e and the four vertices of the quadrilateral

interface that separates the central hexahedron and its gth neighbor are the vertices

of a octahedron. This octahedron hereafter is denoted by 111(8; g).

In the space-time computational domain, again we assume that t = nat at the nth

time level (n = 0,1/2,1,3/2,...). Also, for a given n > 0, let Q, O', and Q" (not shown),

respectively, be the points on the nth, (n - 1/2)th, and (n + 1/2)th time levels with point

Q being their common spatial projection. Other space-time mesh points such as (i) Q* and

Q'*; (ii) B,, Bk, and B_', k = 1,2,3,4,5,6,7,8; and (iii) Ae, A e, A_ and A}*, g = 1,2,...,6,

are defined similarly. Because geometric objects in E4 generally are difficult to visualize,

they will be described analytically in the following discussions.

To proceed, note that a "plane" (termed a hyperplane) in E4, by definition, is a

subspace of E 4 defined by a linear equation, i.e.,

alx -}-a2_lq-a3z +a4t=ao ((el) 2 +(32) 2 +(aa) 2 + (a4)2 #0) (3.4)

where ak, I¢ = O, 1, 2,3,4, are constants. As a result, a hyperplane in E 4 is a three

dimensional subspace. The unit normal to the hyperplane is

(al,a2,aa,a4) (3.5)
= + v'(al) + + (az) +

Note that a hyperplane segment, by definition, is a bounded region of a hyperplane.

Two types of hyperplane segments in E4 are involved in the definition of SEs to be

given shortly. A hyperplane segement of type I, denoted by F(V; t_), is formed by all the

points (z, ?/, z, t) that satisfy the conditions (i) t = t_; and (ii) (z, !', z) E V, where t_ is

a constant and V denotes a 3D spatial region. Obviously the equation t = t_ is a special
form of Eq. (3.4). Also it can be shown that:

(a) The unit normal to F(V__;t,_)is (0, 0, 0, +1).

(b) The "area" of F(V; tc) is the volume of V.
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((:) The <(_(_rdinat, es of r,tlc ccntroid of F(V; L:) _re (:c_, iy,_,z_, t,,.) wh(wc (.c_., .q_..z,-) are the
coordina.t(_s of the centroid of V.

On the other hand, a hyperplane segment of type II, denoted by F(S; t_, t+), is formed

by all the points (z, :q, z, t,) that satisfy the conditions: (i) (z, ._, z) E S; and (ii) t_ < t < t+,

where S denotes a spatial plane segment, and t_ and t+ (t_ < t+) are constants. Note

_ha_ every point (z, .{1,z j on r,he spatial plane segment _S satisfies a linear equation of the
forln

ClX + C2_ _, C.3Z : CO ((CI) 2 -_ (C2) 2 + (C3) 2 ¢ 0) (3.6)

where ck, k = 0, 1,2,3, are constants. Thus every point (x,y,z,t) on F(S;t_,t+) also

satisfies a special form of Eq. (3.4), i.e.. Eq. (3.61). Moreover, it can be shown that:

(a) The unit normal to f(S;t_,t+) is (r7,0) where r7 is the unit normal to the spatial

plane segment S, i.e.,

g = + (c,,c2, ca) (3.7)
- + +

(b) The "area" of F(S; t_, t+) is the area of S multiplied by (t+ - t_).

(c) The coordinates of the centroid of F(_S;t_,t.+) are (z_,5,_,z_,(e_ + ,+)/2) where

(:r_, g_, z_) are the coordinates of the centroid of S.

In addition to the above two types of hyperplanes, we shall also consider "hyper-

cylinders" in E4. A hypercylinder, denoted by A(V; t_, t+), is formed by all the points

(z,/,,, z, t) that satisfy the conditions: (i) (z, y, z) C V__;and (ii) t_ < t < t+, where IvZis a

3D spatial region, and t_ and t+ (t_ < t+) are constants.

With the above preliminaries, SE(Q*), the solution element of point Q*--the point

that lies on the nth time level and has Q* as its spatial projection, is defined to be the

union of r(E(24); _) and r(A(j); j = 1,2, 3,..., 12, and their immediate

neighborhoods. Moreover, the six basic conservation elements (BCEs) of point Q, denoted

by C e(Q), g = 1,2, 6, are defined to be the hypercylinders A(V(8;g);tn-_/2,P_),

C = 1,2,..., 6, respectively. In addition, the compounded conservation element (CCE) of

point Q, denoted by CE(Q), is defined to be A(V(24);tn-_/2,tn), i.e., the union of the
above six BCEs.

In this section, (i) the set of the space-time mesh points whose spatial projections are

the centroids of the hexahedrons that fill the 3D spatial computational domain is denoted

by _2; and (ii) the set of the space-time mesh points whose spatial projections are the

solution points of the centroids referred to in item (i) is denoted by ft*. Note that the

BCEs and the CCE of any mesh point E f_ and the SE of any mesh point E f_* are defined

in a manner identical to that described earlier for point Q and Q*.

3.2. Approximations Within a Solution Element

E * (z ._/,-,t), fm(Z, g, z, t), 9_(z,g," t)For any0*Cfl*and(x,.V, , ) S , _ _, ,
qm(z,_l,z,t), and _Z_r_(Z,!t.z.t) are approximated by _z*,,(z,g,z,t:;Q*), f*(cC, Zl, Z,f: Q*),

9_(z,g,z,t;Q*), q,*_(z,g.z,t.:Q*), and _Zm(Z,.!g.z,t Q*), respectively (see below). For any
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r_r_ = 1, 9_, 3,4.5. let

,;, (_, y. z. t: Q*) d2--'r(,,T,)o- + (,,m_)Q-(x - zQ. ) + (_my)Q-(:j - :/Q- )

+ (_m.)Q.(z - _Q-)+ (_,m,)Q.(t - t _)
(3.8)

f,*_,(.v,y,z,t; Q') dcf (fro)Q- + (f_)Q.(x -- XQ.) + (fmy)Q'(Y - YQ')

+ (frnz)Q*(Z -ZQ. ) -t- (fmt)Q'(t -- t n)
(3.9)

gm(_, ._J,_-t; Q* ) ___r(gin)Q" + (.qm_)Q-(x-- _Q- ) + (_,,_)Q- (y - _Q. )

+ (g_)Q.(_. - _.Q.) _- (gm_)Q.(t - t")
(3.10)

q_(x,g,z,t;Q') d_=f(qm)Q" + (qm_)Q.(x - xQ.)+ (qmy)Q'(Y-- YQ')

+ (qm_)Q.(_ - zQ.) + (qm_)Q.(t- t _)
(3.11)

and

fF_(x,y,z,t;Q*) _f (f_(z,g,z,t;Q*),g_(x,g,z,t;Q*),q_(x,y,z,t;Q*),u*_(x,g,z,t;Q*))

(3.12)

be the 3D extension of Eqs. (2.4) and (2.7)-(2.9). Note that, in this section it is implicitly

assumed that any notation that has a similar 2D version is defined similarly. The definition

of such a notation will not be given explicitly here unless confusion could occur.

Moreover, we assume that, for any (x, g, z, t) _ SE(Q'), and any -_ = 1, 2, 3, 4, 5,

cgu_(z,y,t;Q*) +cgf_(x,y,t;Q*) +Og_(z,y,t;Q*) +Oq_(x,y,t;Q*)=0 (3.13)
Ot Ox Oy Oz

Thus, for any m = 1, 2, 3, 4, 5,

(umt)Q- = -(f,,:)Q* - (gm.v)Q" - (q,-,,_)Q"

,5

= - _ [(/m,_)Q-(_)Q- + (gm,_)Q"(_)Q" + (qm,_)Q"(_)Q" ]
_1

(3.14)

Using the equations given above, it can be shown that, for the current 3D case, the onIy

independent discrete variables associated with the space-time solution point Q* are (Um )Q.,

(um_)Q-, (umy)Q., and (u_=)Q., rn = 1,2,3,4,5.

3.3. Evaluation of (Um)Q.

We begin with the following preliminaries:

(a) The boundary of CE(Q) is formed by the :'top face" r(v_(24); t-), the "bottom face"

F(V(24);tn-1/2), and the 24 :'side faces" r(A(k,O;t'-'/2,t"), Ic : 1,2,3,4 and e =

1,2,...,6. Because 1_Z(24) is the union of V__(8;e), e = 1,2,...,6, the top (bottom)

face is the union of r(v_'(s: e); t _) e= From the above
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observatiorls, one concludes that t,he boundary of CE(Q) belongs to the union of

SE((_)*), and , '* , E *SE(A e ), _. = 1 2 ..... 6. Specifically, (i) F(V(24): t '_) belongs to S (0);

and (ii) for each e = 1,2,...,6, r(K(s;e);t '_-_/2) and r(/k(lc, e):t_-'/2,t'_), k =

1,2,3.4, belong to SE(A)*). Note that (i) r(K(8;e);t'_), ( = 1,2 .... ,6. the union

of which is r(v(24); t-), also belong to SE(A_), e = 1, 2,.... 6, respectively; and (ii)

F(V(24); t,_-_/2), which is the union of r(£(s; e); e = 1,2,..., 6,  lso belongs

to $E(Q'*). However, in the evaIuation of Eq. (3.16) (see below), by assumption,

F(K(24); t _ ) is considered to be a subset of SE( Q* ) while I"(V(24); f"-'/2)is considered

to be the union of subsets of SE(A_*), g = 1,2,..., 6.

(b) Let F be a hyperplane segment lying within SE(Q'). Let (i) A be the area of F;

(ii) (.T._.,5'_. :,:_t_:) be the coordinates of the centroid of F; and (iii) r7 be a unit, vector
tiormal to r'. Then it can be shown that

h*m . d_= h,_(x_,y_,z_,t_;Q*) . A ff (3.15)

where d_" = dcr K with da being the area of a surface element on F.

(c) Let V denote the volume of V(24), i.e., the area of the top face r(K(_.4); t ") of CE((?).

(see comments (a)-(c) given following Eq. (3.5)). Because the unit outward normal

vector (outward from the interior of CE(Q)) of this face is (0, 0, 0, 1), its surface vector

(i.e., the unit outward normal vector multiplied by the area) is (0, 0, 0, V).

(d) Let V e and (z _,ye j), repectively, denote the volume and the spatial coordinates

of the centroid of any V(8; g). Then the surface vector, and the coordinates of the

centroid of F(_V(8; g); tn-_/2), respectively, are (0, 0, 0, -V _) and (x e, ye, z e, t,-_/2).

(e) Let S_,(ntk_ e e zl _ z _, nky , nk_), and ( k, Yk, k), respectively, denote the area, the spatial unit
outward normal, and the coordinates of the centroid of any A(;c, g). Then the sur-

face vector, and the coordinates of the centroid of the side face F(A(k, _); tn-_/2; tn),

_e ne 0) and (x e y_, e n _,t/4) (see commentsrespectively, are (at/2)Se(nek_,nky , k=, k, zk,t --

(a)-(c) given following Eq. (3.6)).

(f) Note that: (i) (zQ., yQ., zQ., t n) are the coordinates of the centroid Q* of the top

face F(V(24),t '_) of CE(Q); (ii) u;(xQ.,yc_.,zo.,t'_;Q *) = (Um)Q. (see Eq. (3.8));

and (iii) the surface vector of the top face is (0,0, 0, V). As a result, Eq. (3.12) and

(3.15) imply that the flux of h m leaving CE(Q) through its top face is (um)Q.V.

Similarly, by using the information presented in items (a), (b), (d) and (e), the flux

of h_ leaving the other faces of CE(Q) can be evaluated in terms of the independent

marching variables at points A_*, g = 1, 2, 3, 4, 5, 6.

Let

_s fi_ - d_'= O, m= 1,2,3,4,5 (3.16)
(CE(Q))

i.e., the total flux of h m leaving CE(Q) through its boundary vanishes. Then, with the aid

of the above preliminaries, it can be shown that

6

("re)Q- , r= R,_)/_, m = 1,2,3,4,5 (3.17)

e= 1
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where, for any m, = 1,9_,3, 4, 5 and any C = 1,9_ ...,6.,

.|

;< w • ' ' '" E '[4 " ' ' 4.,,° .4'"= , , - _ f_(._k .','k, - e )t_,r,(:r Y ,, , _- /2 Ae ) 7Si , -
k----I (3.18)

e .( e e ,:£,tn_At/4: 4") n e " (,r e e zke,t n '* ]+nk:v.q,_ rk._.&, " e. + k_ q,_ , Yk, -at�4;.4 e )

Here Um(X,g,Z,_ ,,, • I. * (Z,y,Z.t; '* *• Ae ), fS(z,Y,z,t;Ae ), gm , Af ), aaq.d qm(X,y,z,_;AIg *) are de-

fined using Eqs. (3.8)--(3.11), respectively, with the understanding that the symbols Q"

and t '_ in these equations be replaced by A}* and t n-_/2, respectively. As a result, each

Re,, and therefore each (u,,)Q., an independent marching variable at the rzth time level,

is a flmction of scveraI independent marching variables at the (n - 1/2)th time level, i.e.,

(urn)A;-, (um_)a'-, (amy)Ai-, and (um,)Ai. , m = 1,2 3,4,5 and e = 1,2, ...,6.

3.4. Evaluation of (Um_)Q-, (U_y)e- and (Um_)e.

First, we perform a spatial translation of the polyhedron A_A_A_AIA_A_ so that

the centroid of the resulting new polyhedron A_A_A_.4_A_A_ coincides with Q*. Let (i)

the eentroid of the polyhedron A_A_A_A?,A_A_ and its spatial coordinates be denoted

by A* and (XA.,YA.,ZA.), respectively; and (ii) _x = xQ. -ZA-, 6y = Yea" --YA', and

6z = zc2. - ZA.. Then (XA;,YA;,ZA;), the spatial coordinates of A_, g = 1, 2,...,6 are

given by

Z A; = 32,A"_ "+" (SX, YA; = YA[ -t- (5l] and ZA; = ZA; + 6z (3.19)

As a preliminary for the following discussions, for m = 1, 2, 3, 4, 5 and g = 1, 2,..., 6, let

(Urn)A_ deal U_a(Z.4; , Y,4;, ZA;, tn; A?) (3.20

and

_) d_f(, Q. = n /n,

where

def
632£ def o - XQ. 6Ye : YA_ yQ* , 6zg def: :OAt , -- = ZA_- ZQ. (3.22

Next consider the vertex B 1 depicted in Fig. 5. This vertex is the common vertex of

the central hexahedron and three of its neighbors. As an example, let the identification

indices g of these three neighbors be 1, 2, and 3. Then, for any m = 1, 2, 3, 4, 5, consider

the four points in the 32-y-z-u space with the coordinates (XQ.,yQ.,ZQ.,(Um)Q.), and

(XA;,YA_,ZA_,(Um)A;) , g = 1,2,3. It can be shown that the values of Ou/Ox, Ou/cOy, and

0%/0% on the hyperplane that intercepts the above four points are given by

?-t(1))Q- de2 Ay/A, (u(ml))Q" d_=fA./& (A # 0) (3.23)my

def
A=

6321 6y I 6zi

6z2 6y2 622

6xa 6ya 6z3

(3.24)
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all d

_tt i

def " 2

6y 3 5z:_

def

_5:rI &tt L 5z l

5z2 _2 5z2
rTt

5z,_ 5ua_ 5z3

def

5:r.2 @2 8u_

8z3 @3 8u3.,

(3.25)

Note that: (i) A = 0 if and only if the spatial projections of A_', A_, A_ and Q* are
, (k) . (k) (k)

coplanar; and (ii) For each k = 2,3,. ... ,8, tUmz)Q-, (a, w)o. , and (Um:)Q- are defined by

the above definition procedure except that _1 is replaced by B k.

With the above preliminaries, for each m = 1,2,3,4,5, (um_)Q-, (u,_y)e-, and

(um-)Q- may be evaluated by

8 8 8

1 _7,(u(k ) I _--,(u(_ ) I Z(u_))Q. (3.26)(_m_)O"= g L,' _)Q'' (_my)q" = _ Z_.,' m,)Q', (_)O" = g
k=l k=l k=l

Alternatively, for a flow with steep gradients or discontinuities, the simple averages in

Eq. (3.26) may be replaced by weighted averages, i.e.,

0, s [<W(k),_, (k), . )¢,(_)Q. = ___ L_ _ )_;Q]/EL_(w2 )

{0,(Umy)O" = s <,,,(k),_, (k), ]
E_=_ _vm ) _)Q.j �ELf(writ)) _

and

if0mk =0, k= 1,2,...,8

otherwise

(3.27a)
ifOmk=O,k= 1,2,...,8

otherwise

(3.27b)

0, ifO_k=O,k= 1,2,...,8Ek=, ( )'(u(,_)z)Q. /Ek=,(W(k)) '_ otherwise

(3.27c)

Here (i) c_ > 0 is an adjustable constant (usually c_ = 1 or c_ = 2); (ii)

= [t m_)_- + (u_)Q. + (um..)e- (3.28)

and (iii) for each k, l,I"(__) is _he product of 0m_,O_2,... ,0ms excluding Omk. Note that:

(i) to avoid dividing by zero, in practice a small positive number such as 10 .6o is added to

the denominators that appe_ in Eqs. (3.27a)-(3.27c); and (ii) Eqs. (3.27a)-(3.27c) reduce

to Eq. (3.26) if a = 0.
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3.5. Remarks and Discussions

Th(_pre,_cnt3D Euler solv_r is formed using Eqs. {3.17) and (3.27a)-(3.27c). With
sometrivial modifications, most of the discussionsabout the 2D schemegiven in $ec. 2.5
and the Appendix are alsoapplicable to the present3D scheme.In particular, the concept
of local and global flux conservationcan also beestablishedfor the present 3D schemeby
_lsii_ga redefinition proceduresimilar to that presentedin _;heAppendix.

4. Numerical Results

The capabilities of the presen: 2D and 3D schemes will be demonstrated using the

numerical examples presented in the following subsections.

4.1. Shock Reflection on a Flat Plate

This steady-state t_est problem was proposed by Yee et al. [28]. By imposing suitable

upstream conditions, oblique incident and reflected shocks will appear above a flat plate.

The spatial computational domain is a 4.0 x 1.0 rectangle containing 19200 uniform rect-

angles. For the resulting space-time mesh, (i) f_* = f_, and (ii) Q* can be divided into two

disjoint sets ft__ and f_* (see Sec. 2.5).

The flow conditions at t = 0 are [9]

(2.9, 0.0, 1.0, 0.71428), ahead of the incident shock(u, v, p,p) = (2.6193, -0.50632, 1.7, 1.5282), behind the incident shock (4.1)

where u, v, p and p, are x-velocity, y-velocity, mass density and static pressure, respectively.

For t > 0, (i) the flow conditions given in the first and second rows on the right side of

Eq. (4.1) are imposed on the left and the top boundaries, respectively; (ii) the reflecting

boundary conditions (see the bottom half of p.124 in [9]) are imposed on the bottom

boundary (a solid wall); and (iii) the non-reflecting conditions [9,13] are imposed on the

right boundary (a supersonic outlet).

Note that, for the reflecting boundary conditions used here, no mesh point lies on

the solid wall. In addition; for each interior mesh point immediately neighboring to the

solid wall, at the same time level there is a mirror image ghost mesh point lying just

below the wall. Because (i) the solution values at the ghost point are assigned to be the

mirror-image values of its corresponding interior mesh point, and (ii) one of the above two

points belongs to f__ while the other belongs to _2", the solution values of __ and f_*

are coupled by the present reflecting boundary conditions. In spite of this disadvantage,

as explained in [9], the set of reflecting boundary conditions used here (which will also be

used in the following numerical examples) is the most robust among several sets of the

reflecting boundary conditions described in [9]. Note that, because the marching over f__

and that over f_*_ are completely decoupled from each other except for the mesh points

immediately neighboring to the solid wall, only the solution values of one of f__ and f_*__

are involved in producing Fig. 6(b), although the numerical time-marching itself involves

both Ft__ and f_*__. Here it should be emphasized that, for the current special problem in

which only one straight solid wall is present, only one of Q* and Q* needs to be used in+
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_hc conqmtat,ion if',hlstc_d, one itsc_r}u,r_'fl_-_cr,ing boundary conditi_ms similar t,othat

described on p.122 in [91 .

The pressure c(mtours generar, cd using the present 2D scheme with _ = 2 ;_re shown in

Fig. 6(_). The angle between the conlputcd reflected shock and the horizontal line is 23.28 °,

which is vary close to the analytical value [27]. Furthermore, as shown in Fig. 6(b), (i) the

numerical values of the pressure coeKicient at the horizontal mid-section of the rectangular

domain agree very well with the analytical values; (ii) no numerical oscillations are detected

near either the incident or the reflected shock; and (iii) both the incident and reflected

shocks are resolved by a single data point.

4.2. Shock Wave Diffraction over a Wedge

This test problem, which was originally used by Wang [6]_ is based on a flow field

given in the flow album edited by van Dyke [29]. A planar shock wave at Ms = 1.3 moves

toward a wedge with the angle 8 = 26.565 (see Fig. 7(a)). Taking advantage of symmetry,

only half of the flow field is simulated. The spatial computational domain is a rectangle

with -018 < z < 3.2 and 0 < y < 1.1, excluding the wedge. The whole domain is divided

into 248,750 non-uniform quadrilaterals and a = 1 is assumed.

At _ = 0_ the incident planar shock is placed at x = -0.5. For t > 0, (i) the

constant behind-the-shock flow conditions are maintained at the the left boundary; (ii)

the reflecting boundary conditions are imposed on the upper and lower boundaries {note:

the lower boundary is the symmetric center line}, and also on the surfaces of the wedge;

and (iii) the non-reflecting boundary conditions are imposed on the right boundary, a

supersonic outlet.

To enhance the visual effect, the density countours of the entire flow field at three

different times are presented in Figs. ?(b)-(d). When the planar shock reaches the wedge, a

circular reflection wave is generated. As the shock passes the wedge, the flow separates and

vortices are formed around the two sharp corners. Further interaction between shocks and

vortices produces increasingly elaborate patterns of shock waves, slip lines and vortices.

These results agree well with the experimental result [29] except for those phenomena

induced by the viscous effect. Here, it should be pointed out that the exact locations of

the upper and lower walls in the experiment are not given in [29] (we only know that these

walls are actually above and below the top and bottom edges of the photograph frame,

respectively}. As a result, the spatial domain assumed in the current simulation {which is

slightly lareger than the photograph frame} is only an approximation of the actual physical
domain.

4.3. Three-Dimenslonal Detonation

The 3D scheme described in Section 3 has been extended to become a solver for

conservation laws with source terms. Previously, we have reported numerical simulations

of 1D and 2D detonation waves by using the CE/SE method [25]. Those results have been

validated by comparing them with analytical solutions and numerical solutions reported by

other researchers. In the present paper, 3D simulation of a detonation wave is performed

by solving the reacting Euler equations. The chemic_ reactions are modeled by single-step,

irreversible and finite-rate kinetics. Two chemical species are considered, i.e., t.hc reactant

22



aml the'_r_)(lu(:t.Th_ Euler equations;ui(i onespa:ties(;quation aresolvedsirnuhaneously.
With i)roi)(u a()n-clim6_nsionalizati,)n,it. <anbeshown that the defining parametersof this
_lm.onationway(.at(' the,.ov('_rdrive'ufactor f, the specific heat ratio 3', the activation energy

E +, and the heat release rate q. In the present simulatiom f = 1.6, ?_ = 1.2, E + = 50,

arid q = 50 are assumed.

In the current simulation, c_ = 1 is assumed. Also the spatial computational domain,

a 8 x 8 × 6 rectangular box. is divided into 6.4 million hexahedrons. Reflecting boundary

conditions are imposed on the four lateral walt boundaries. The fresh reactant travels from

top to bottom, and is consumed by the frame front. On the top surface, the incoming flow

conditions are specified. On the bottom surface, a non-reflecting boundary condition is

imposed. The coordinate system is chosen such that. the frame front stays in the horizontal

mid-section of the rectangular box.

A snap shot of temperature countours is shown in Fig. 8. The flow field is composed

of the quiescent state of the reactant ahead of the shock, a flame zone with finite rate

reaction, and the equilibrium state behind the reaction zone. Due to cellular structure of

the detonation, the flow" field is very complex. The shock front is characterized by triple

points traveling in transverse directions. The colliding triple points create tremendous

vortices. We observe the classical picture of "explosions within explosions" sustained by

the propagating triple points at the detonation front. It is seen that a high-temperature

region exists around triple points. At each collision of triple points, vortices with opposite

signs are created and propagated downstream. Due to these vortices, unburnt reactant is

pushed into the flame zone. The continuous burning of the pockets of the unburnt reactant

behind the flame zone greatly extends the effective flame zone.

5. Concluding Remarks

In this paper, the original 2D and 3D CE/SE Euler a-a schemes (which use triangular

and tetrahedral meshes, respectively) were extended to solve the 2D and 3D unsteady Euler

equations using quadrilateral and hexahedral meshes, respectively. It has been shown that

the present schemes retain many key advantages of other CE/SE schemes, i.e., efficient

parallel computing, ease of implementing non-reflecting boundary conditions, high-fidelity

solutions, and a genuinely multidimensional formulation without using Riemann solvers.

The only key disadvantage of the present schemes (and, for that matter, any other a-a

scheme) is that, compared with other more general CE/SE schemes such as the a-e-o_-/3

schemes [9], they allow for less freedom in adjusting numerical dissipation. As explained in

Sec. 5.5 of [9], this inflexibility may impose a constraint on the performance of the current

schemes in numerical simulations involving highly nonuniform meshes.

In addition, it was pointed out that, by combining the techniques used to construct

the present and earlier CE/SE solvers, one could easily develop 2D and 3D mixed mesh

solvers. An advantage of using such a mixed mesh is that a geometrically complex spa-

tial subdomain can be filled easily using triangles or tetrahedrons while a less complex

subdomain, such as a near-wall region, can be filled using quadrilaterals or hexahedrons.

Also, a rigorous discussion about the concept of local and global flux conservation as

applied to the present 2D scheme using an unstructured mesh is given in the Appendix. As
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_ part, of t,his discussion,a post-marching procedurewas introduced r,ohandle a %olution
de('(mpling" problern tha,t may arise after a long marching involving many time steps.
Wi_,hout,any except,ion. the discussionsgiven in the Appendix can be extended to 3D

easily.

Appendix

In this appendix, using a similar technique presented in [10], local and global flux

conservation will be established for the present 2D scheme using an unstructured mesh.

Also a post-marching procedure will be introduced to handle the "solution decoupling"

problem referred to in comment (f) of Sec. 2.5.

Note that, for the case in which the ft__-fl*_ mesh decoupling referred to in comments

(c) and (d) of Sec. 2.5 does not occur, generally the space-time computational domain

cannot be filled by the union of a combination of nonoverlapping CCEs. As a result,

global flux conservation cannot be established by summing over a set of local conservation

conditions Eq. (2.13). However, even in the nondecoupling case, the computational domain

can still be filled by the union of a combination of nonoverlapping BCEs. As a result,

through a process of flux redefinition to be shown, one can manage to preserve the concept

of local and global flux conservation over the BCEs and the union of any combination of

them.

As a preliminary, first we introduce the following definitions (see Fig. 4(b)):

(a) For any rn,g = 1,2,3,4, let F_(Q*) denote the flux of Yz_, leaving CE(Q) through the

top face of CEe(Q), assuming that this top face belongs to SE(Q*). Note that the top

faces of CEe(Q), _ = 1,2, 3, 4, are the quadrilaterals A1BIQB4, A2B2QB1, A3B3QB2

and A4 B4QB3, respectively.

(b) For any m, g 1, 2, 3, 4, let _ '* _*= F_(A e ) denote the flux of h m leaving CE(Q) through

the bottom face of CEe(Q), assuming that this bottom face belongs to SE(A)*). Note
I I I I

that the bottom faces of CE_(Q), g = 1,2,3,4, are the quadrilaterals A_B_Q B4,

A'2R'm'R' ,_' B'm'R' and A' r_'v_' B' respectively.""2'_ _"_1_ _'3 3'_ _2 4_'4"_ 3,

(c) For any m,g : 1,2,3,4 and any k = 1,2, let F(_k't)(A'e *) denote the flux of _z_

leaving CE(Q) through its (k, f) side face, assuming that this side face belongs to

SE(A}*). Note that the (k, () (k = 1, 2, e = 1, 2, 3,4) side faces of CE(Q) are defined

in Comments (e) of Sec. 2.3.

With the above definitions, local flux conservation over CE(Q), i.e., Eq. (2.13), implies
that

4

E _ • I.s. (Q o (A.1),Ae )=
_=1

where

Se(Q *, Ae ) clef Fg . 8_ ,. I:7(2,Q(At .'* = _.(Q )+ F_iAI*) + r_'e)(At ) +. m k'_J'_. ) (A.2)

Note that Eq. (A.1) says nothing about local flux conservation over CEe(Q), _ = 1, '2, 3, 4.

As will be shown, loc_l flux conservation over theso BCEs (:an be realized with a proper
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assignm(:ntof 'art.ificial fl_lxes'"over the,four interfacesthat divi(h" CE(Q) into CEe(Q),

t= 1, 2.3.4.

To proceed, note that the boundary of each CEe(Q) is formed by _he top face. the

bottom face and the four side faces. Among these four side faces, two are also the side

Noes of CE(Q) while the other two belong to the set of the four interfaces that divide

CE(Q) into CEt(Q), _' = 1,2, 3, 4. Hereafter, the first pair and second pair of the above

four side Nces, respectively, are referred to as the ':exterior" and ':interior" side faces of

CEe(Q). Obviously, for each m, the four germs on the right side of Eq. (A.2) represent

the fluxes leaving CEe(Q) through its top face, bottom face, and two exterior side faces,

respectively.

Next, for any rn = 1, 2, 3, 4, let F_:2(Q) represent a flux (as yet to be defined explicitly)

leaving CEt (Q) ( and entering CE2 (Q)) through the interface dividing CE_ (Q) and CE2 (Q).

F_:a(Q), F_:'*(Q) and F_:_(Q) are similarly defined. In addition, for any rn = 1,2,a,4, let

SI(Q*,A; *) + F,_2(Q)- F_:I(Q)= 0 (A.aa)

2 *
Sm(Q ,A'2* ) + F_:3(Q)- FI:2(Q) = 0 (A.nb)

3 .
Sm(Q ,A'a*) + F3m:4(Q)- F_:3(Q) = 0 (A.3c)

4 * r* 4:1 3:4
S_(Q ,A 4 ) + F,_ (Q) Q) o- F_ ( = (A.3d)

Note that (i) I • ,.Sin( Q , A_ ) represents the sum of the fluxes leaving CE_(Q) through its top

face, bottom face and two exterior side faces; and (ii) F_:2(Q) and -F_I_(Q), respectively,

represent the fluxes leaving CEI(Q) through its two interior side faces. Thus, for each m,

Eq. (A.3a) represents a local flux conservation relation over eEl(Q). Similarily, for each

m, Eqs. (a.3b)-(h.3d), represent local flux conservation relations over CE2(Q), CE3(Q)

and CE4(Q), respectively.

Note that a summation over Eqs. (A.3a)-(A.3d) results in Eq. (A.1)--the known local

conservation condition over CE(Q). Thus, for each m, Eqs. (A.3a)-(A.3d) contain only

three independent conditions for four unknowns Flm:2(Q), F_:3(Q), F_:4(Q) and F_:I(Q).

In other words, there still is a degree of freedom left for these unknowns.

To proceed, note that the interfaces that divide CE(Q) into CEe(Q), g = 1,2,3,4,

all belong to SE(Q*). As a result, even though they are not used in the construction of

the present scheme, the fluxes of h_ at these interfaces can be evaluated in terms of the

independent marching variables at point Q*. In the following discussion, the evaluated

flux of h_ leaving CE_(Q) (and entering CE2(Q)) through the interface dividing CE_(Q)

and CE2(Q) will be denoted by F_:2(Q*). Similarily, one also define F_3(Q*), F_4(Q *)

and F,_I(Q*).

With the above definitions, the degree of freedom referred to earlier is removed by

requiring that, for each m, FI:_(Q), F,_3(Q), Faj4(Q) and F_:I(Q) be the solution to

Eqs. (A.3a)-(A.3d) with the minimal value of

Lm _f [F22(Q)- F_:2(Q*)] 2 + [F_:3(Q)- F_:3(Q*)] 2
(A.4)

3:,I 3:4 rr74:l 4:1+ [<,, (Q; +- F;_ (Q it., (Q)- F£ (Q.)]2
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[t can I)(, sh()wn that the last requh'eme, nt am()unt, s to irnposhlg th_ _ extra cx)ndition

4"[z/,(-'cO,)+ F//_IQ) + E2;"!C2)+ Z_ (Q)
(A..5)

__ F2-3 . ,, 3:4 ,1:1- F,'d"(Q') + ,,; (Q j + P;,, (Q*) + F'_ ((?'t

By using gq. (A.5) and any three of Eqs. (A.3a)--(A.3d), for each m., F_:'_(Q), F_:3(Q),
a:4 F4: l (OF;_ (Q) and m ,-.J can be uniquely defined in terms of known parameters F_:2(Q*),

0.3 . . f4dL(O. _ _,.F_,: (@), F_:'_(Q*), ), and s_(o'..% ), e : 1,2, 3, 4.
Next, note that a space-time region may be the common BCE of two different mesh

points (these two mesh points are referred to as the cohosts of the common BCE). As an

example, the space-time cylinder AzBtQB4AIB 1'' ' "_°'B'4 depicted in Fig. 4(b) was designated

as CE_(Q). However, it also can be designated as a BCE of point .4_, say CEx(A,). As will

be shown in the following remarks, for each m, how the flux is assigned to each face of the

space-time cylinder, along with the resulting flux conservation relation over the cylinder,

is dependent on whether it is designated as CE_(Q) or CEI(AI):

(a) At the top face of CEI(Q) (CEI(A1)), the flux is evaluated assuming that the face

belongs to SE(Q* ) (SE( .4 _ )).

(b) At the bottom face of CE_(Q) (CE_(A_)), the flux is evaluated assuming that the face

belongs to SE(AI* ) (SE(Q'*))

(c) The exterior (interior) side faces of CE_(Q) are the interior (exterior) side faces of

CEI(A1).

(d) At each of the exterior side faces of CE_(Q) (CE_(A_)), the flux is evaluated assuming

that the side face belongs to SE(AI') (S_,(Q*)).

(e) A local conservation condition over CEI(A_) (different from that over CE_(Q), i.e.,

Eq. (A.3a)) will result if the artificial flux at each interior side face of CE_(A_) is also

assigned using a procedure parallel to that used to assign the flux at each interior side

face of CE1 (Q).

Consider a common BCE of two cohosts lying in the interior of the computational

domain. From the above discussion, one concludes that, for each r-a, (i) two different fluxes

are assigned to each face of the BCE, and (ii) corresponding to the two eohosts, there are

two different conservation relations over this BCE. Hereafter, the simple average of the

two fluxes at each face will be referred to as the generalized flux at this face. By summing

the two local conservation relations over the BCE, one concludes that the total generalized

flux leaving the BCE through its boundary vanishes.

Furthermore, note that: (i) only one generalized flux is defined at any interface divid-

ing two neighboring BCEs; and (ii) the generalized flux leaving a BCE through an interface

dividing this BCE and a neighboring BCE is the negative of the generalized flux leaving

the neighboring BCE through the same interface. Thus, one arrives at the following global

flux conservation relation: for each m, the total generalized ftux leaving the boundary of

any space-time region that is the union of any combination of BCEs (with each of these

BCEs having two interior cohosts) vanishes.

To proceed further, note that, for each m, corresponding to its two cohosts, the

boundary of a BCE is assigned two sets of fluxes. Because. of the space-time sta.ggcring
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nature of the st,encil of the present,scheme.,t,he above two sets along with t.he solution values

at its two cohosts m_\v become decoupled locally after many marching steps. Note that one

may _trgue that this decoupling does not matter, because the amount of decoupling usually

is of the. order of the discrepancy between the numerical solution and the exac_ solution

and, as such. it does not exacerbate the actual simulation errors. However, in practice,

the decoupling can cause a substantial problem in solution display. The decoupling can

maafifest itself as what appear to be srnall-wavelength oscillations when the solution at

the final time level is displayed using the solution values of both f__ and _*__. As will

be shown immediately, not only does the above definition of a unique generalized flux at

any boundary of a BCE provide a way to avoid the problem of "flux decoupling", it also

provides a way to handle the problem of "solution decoupling".

Consider the top face of any BCE with two cohosts. For any rn, the two fluxes assigned

to this face, respectively, are evaluated assuming that the face belongs to the SEs of its

two cohosts, respectively. It can be shown that these two fluxes, respectively, are equal

to the area of the face multiplied by the two values of um at the centroid of the top face

evaluated assuming that the centroid belongs to the two cohosts, respectively. Let the

simple average of the above two values of um be referred to as the coupled solution value

of u,-,, at the centroid of the top face of this BCE. Then it can easily be shown that, for

each ra, the generalized flux at this face is simply the area of the face multiplied by the

new solution value. Also, because of how they are defined, solution decoupling generally

is no longer a problem if the numerical data are taken from these new solution values.

Finally, it should be emphasized that the above definition of generalized fluxes and

coupled solution values, by no means implies any change in the marching scheme. In fact,

evaluation of the locations of the centroids of the top faces of the BCEs along with that

of the associated coupled solution values represents only a post-marching procedure.
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Figure 1.mA surface element on the boundary S(V)
of a volume V in a space-time E2.
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Figure 2.--Space-time geometry of the conventional

finite volume method in E2. (a) A rectangle in E2.
(b) A spatial cylinder aligned in the x-direction,

(c) A regular space-time mesh.
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Figure 3.--The SEs and CEs of the a scheme. (a) A staggered

space-time mesh. (b) SE(j,n). (c) CE_(j,n). (d) CE+(j,n). (e) CE(j,n).
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Figure 4.--Space-time geometry of the 2D scheme.

(a) Representative grid points in the x-y plane.

(b) SEs and CEs. (c) Spatial translation of the

quadrilateral A_ A_. A_ A_.

E-12894 Chuang 9pt/100% nm



-A1 A*
×_1

_B1
', QQ" 4
! 0 x

B i
_6p .............. _B7

l IIIII /

B2 B-3

Figure 5.--Representative grid points

in the x-y-z space.
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Fig. 6: The Euler solution of a steady-state shock reflection problem: (a) pressure contours;

pressure coefficient distribution at the mid-section of the computation domain (y=0.5).
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(b) t=0.725

(d) t=1.825

Fig. 7: Schematic and density contours at three different times compared with the experimental

photographs.



Z

Fig. 8: A simulated three-dimensional detonation wave in a square duct: temperature contours.


